7번 문제 전에 사전 설명을 보면 다음과 같다. 각 은하의 형태를 보면 색보다는 모양에서 확연히 분류를 할 수 있을 것 같다. 이것은 꼭 이미지에서 RGB를 반영하지 않더라도 Grayscale로 충분히 학습할 수 있다는 것을 의미한다. 기존에는 아래와 같이 Conv-Pooling-Conv-Flat-FC-FC 구조였다. model.add(layers.Conv2D(32, (3,3), activation='relu', input_shape=(50,50,3))) # RGB model.add(layers.MaxPooling2D((2,2))) model.add(layers.Conv2D(64, (3,3), activation='relu')) model.add(layers.Flatten()) model.add(laye..