앎을 경계하기

cnn 6

[YOLO 정독] YOLO v1

YOLO는 "You Only Look Once"라는 논문으로 세상에 나오게 되었다. 작명센스가 미쳤다.. You only live once 아님 ^^ YOLO의 핵심은 "one stage object detection"이라는 것이다. YOLO가 발표되기전 최신논문이었던 R-CNN 계열은 바운딩박스 후보군을 생성하는 region propose part와 bounding box 정보를 예측하는 Bounding box regressor와 해당 바운딩박스의 클래스를 분류하는 classfier를 따로 따로 나눠서 학습시킨다. 이것을 two-stage object detection이라고 함. 아무튼 그러다보니 R-CNN은 학습이 느리고 최적화가 어렵다. (각 역할마다 모델을 다 따로따로 분리해놨으니 당연히 최적화가..

DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ - TRAINING A CLASSIFIER

What aoubt data?일반적으로 이미지, 텍스트, 비디오, 오디오 데이터를 다룰 때 numpy array로 데이터를 읽고 torch의 tensor로 변환한다. 각 데이터마다 유용하게 사용하는 라이브러리가 존재한다.Images : Pillow, OpenCVAudio : scipy, librosaText : NLTK, SpaCy특히 vision 분야에서는 torchvision을 사용해서 유명한 데이터셋을 불러서 사용할 수 있다.torchvision.datasets, torch.utils.data.DataLoader 유명 이미지 데이터셋 중 하나인 CIFAR10을 사용해보자.CIFAR10은 RGB 컬러 32*32 사이즈 이미지의 총 10개의 카테고리로 이루어져있는 이미지 데이터셋이다. Training ..

Machine Learning 2021.03.08

<DAFIT> 02 딥러닝으로 은하 분류하기 08 - Another Model

CNN의 개선된 모델로 AlexNet을 사용했다. 다른 개선된 모델들(VGGNet, GoogleNet, ResNet)보다 구현이 쉬워서 적용해보니 확실히 성능이 개선되었다. AlexNet은 https://m.blog.naver.com/thswlrud0825/221287973276 여기 참고해서 모델 사용함. 원래 제공했던 예제 코드로는 78%, Conv, MaxPooling 하나씩 추가해서 81%, AlexNet을 사용하니 87%로 올랐다. dropout과 batch normalization으로 regularization 효과를 내서 overfitting을 막는다. 그리고 전 모델들보다 훨씬 깊게 쌓아서 더 깊게(?) feature들을 뽑아낸다.

<DAFIT> 02 딥러닝으로 은하 분류하기 03 - CNN

이번에는 CNN모델을 구성해보는 문제다. 딥러닝을 이용한 은하 분류는 CNN을 사용하여 50x50 사이즈의 3가지 종류의 은하 이미지를 분류하는 것이다. model.add(layers.Conv2D(32, (3,3), activation='relu', input_shape=(50,50,3))) model.add(layers.MaxPooling2D((2,2))) model.add(layers.Conv2D(64, (3,3), activation='relu')) model.add(layers.Flatten()) model.add(layers.Dense(128, activation='relu')) model.add(layers.Dense(3, activation='softmax')) 문제에서 시킨대로 모델 구성 ..

<DAFIT> 02 딥러닝으로 은하 분류하기 02 - Image Data Generator

이 문제를 풀다가 정리했던 포스트를 링크한다. 2019/10/16 - [Study/Deep Learning] - Keras - ImageDataGenerator Keras - ImageDataGenerator Keras - ImageDataGenerator Keras에서 이미지 데이터를 학습할 때 실시간으로 data augmentation을 할 수 있도록 지원하는 클래스로 ImageDataGenerator가 있다. from keras_preprocessing.image import ImageDat.. whereisend.tistory.com 문제는 ImageDataGenerator를 사용하기 위해서 필요한 아래 코드의 A, B, C, D를 채우는 것이다. train_datagen = ImageDataGe..