앎을 경계하기

Ai 2

[Pytorch Tutorials] Image and Video - Transfer Learning for Computer Vision Tutorial

이번 튜토리얼에서는 transfer learning(전이학습)을 사용하여 image classification용 CNN을 어떻게 학습하는지를 배운다.transfer learning의 두 가지 주요 시나리오는 다음과 같다.Finetuning the convnet랜덤 초기화 대신, imagenet 데이터셋으로 학습된 모델같이 pretrained network를 사용하여 네트워크를 초기화한다.ConvNet as fixed feature extractor마지막 fully connected layer를 제외한 모든 레이어의 weight를 고정시키고, 마지막 fully connected layer를 랜덤 weight로 새롭게 구성하고 그것만 학습시킨다.from __future__ import print_functi..

Machine Learning 2021.03.16

DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ - NEURAL NETWORKS

NEURAL NETWORKSNeural Networks는 torch.nn 패키지를 사용해서 만들 수 있다.매우 유명한 Yann Lecun의 LeNet-5 CNN 구조이다.구조는 굉장히 간단하다.32*32 필기체 숫자 이미지를 넣으면 Convolution layer와 Fully Connected layer를 거쳐 최종적으로 필기체로 쓴 숫자가 무엇인지 output이 출력된다.이러한 뉴럴 네트워크 모델들이 학습이 되는 과정은 일반적으로 다음과 같다.학습가능한 파라미터들로 이뤄진 뉴럴넷을 만든다.반복적으로 입력 데이터셋을 뉴럴넷에 전달한다.정답과 예측값 간 차이, 즉 loss를 계산한다.backpropagation 과정을 통해 뉴럴넷의 파라미터들의 각 gradient를 계산한다.네트워크의 weights를 gr..

Machine Learning 2021.03.08